
Indiana University Science with the WIYN One Degree Imager

Katherine Rhode (Indiana University, WIYN SAC member)

Indiana University Department of Astronomy

 Nine faculty members, plus active emeritus faculty and research scientists

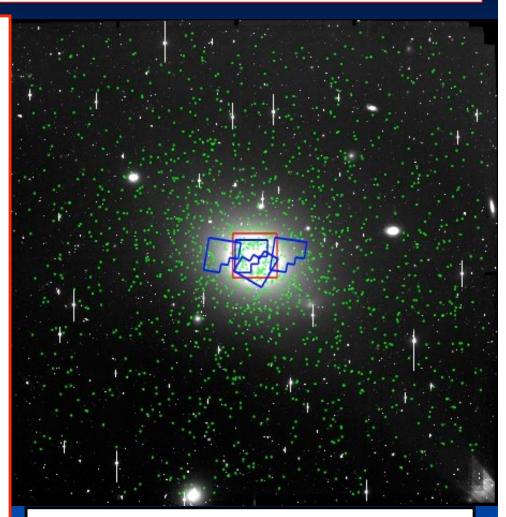
21 PhD students, ~25 undergraduate majors, REU program

Research areas:

- Stellar and chemical evolution
- Galaxies and observational cosmology
- Stellar and Galactic dynamics
- Astrophysical disks
- Instrumentation

17% share of WIYN

Katherine Rhode - The ODI Globular Cluster System Survey


Wide-field survey of the globular cluster systems of giant galaxies in range of environments, 10-25 Mpc away

Technical requirements: large FOV; excellent resolution; deep, multi-color (gri ~ 24-25) imaging

Goal is ~30 galaxies in ~4 years after ODI comes online (N=50 galaxies when combined with current survey)

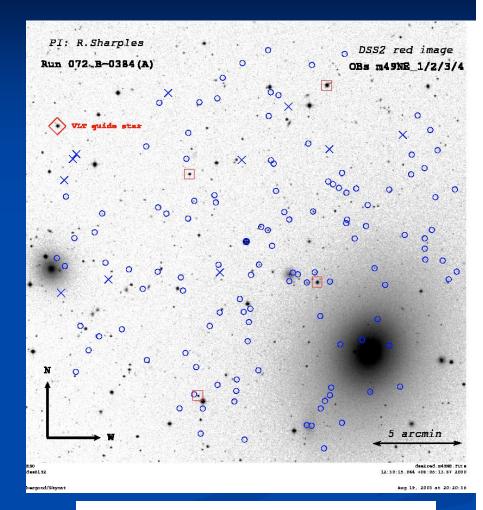
Primary science goal is **testing theories** of galaxy formation

Globular clusters identified in the survey are also used as spectroscopic targets (for tracing the mass distributions of the host galaxies) and matched with X-ray data to study LMXBs, black holes

KPNO-4m Mosaic R image of M49 in Virgo FOV = 38' x 38' (Radial coverage ~120 kpc)

Green = GC candidates Blue, Red = HST coverage

Katherine Rhode - The ODI Globular Cluster System Survey


Wide-field survey of the globular cluster systems of giant galaxies in range of environments, 10-25 Mpc away

Technical requirements: large FOV; excellent resolution; deep, multi-color (gri ~ 24-25) imaging

Goal is ~30 galaxies in ~4 years after ODI comes online (N=50 galaxies when combined with current survey)

Primary science goal is **testing theories** of galaxy formation

Globular clusters identified in the survey are also used as spectroscopic targets (for tracing the mass distributions of the host galaxies) and matched with X-ray data to study LMXBs, black holes

Globular Cluster candidates in M49 targeted for VLT spectroscopy

Con Deliyannis - Open Cluster Studies with WIYN ODI

- Wide-field, deep broadband (ugriz) imaging of open star clusters
- Overall goal: to better understand star and cluster evolution over a range of stellar masses and evolutionary time scales

Specific objectives:

- Empirical definition of lower main sequences and brown dwarf sequences
- Binary fractions (implications for cluster formation and evolution)
- Rotation period monitoring (stellar angular momentum history)
- Cluster ages, e.g., from bottoms of white dwarf sequences

(Tyagan Miller, IU)

John Salzer - ODI Survey for Emission-Line Objects

• Wide-field narrow-band imaging survey for emission-line objects at a range of redshifts.

Cover tens of square degrees to good depth.

• Utilizes strengths of ODI: good areal coverage, superior image quality, 4-m class telescope aperture.

Select filters to fall within OH windows to reduce sky background (e.g., 8120-8260 A). In this case, detect Hα at z ~ 0.25, [O III]λ5007 at z ~ 0.64, [O II]λ3727 at z ~ 1.20, and Lyα at z ~ 5.7.

• Detect star-forming systems and AGN at a variety of redshifts using different lines. Repeat observations with ~3-4 filters to probe SFRs and activity at a range of redshifts *for a given line*.

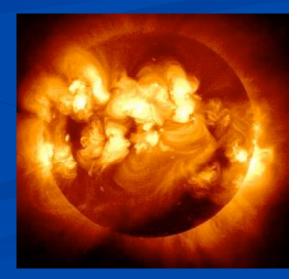
• Requires special narrow-band filters.

Liese van Zee - ODI Survey for Low-Mass Galaxies

- Project to probe the faint end of the luminosity function and exploring role of environment in evolution of low-mass galaxies.
- Broadband (ugriz) + narrowband (Hα) imaging of ~100 square degrees sampling a range of local environments (field, group, cluster).
- ODI's advantage is spatial resolution, which is key for morphological identification (and removal) of luminous background galaxies.

Key Goals:

- calculating the LF
- investigating SF triggering and regulating mechanisms in different environments


Kent Honeycutt - Monitoring M-dwarf Flaring in Open Clusters with ODI

- M dwarfs can exhibit outbursts/flares that dramatically increase brightness over very short time scales (few hours or shorter)
- Measure flare amplitudes and shapes as function of stellar mass and rotation (rotation from photometric star spot rotational modulation—same data).
- Combine with spectroscopy (WIYN Hydra) to study correlation with H-alpha emission. Is H-alpha a reliable proxy for flaring?
- Studying M dwarfs in clusters provides an estimate of age and chemical composition.

RELEVANCE:

- Life on planets surrounding M dwarfs
- Understanding the mechanisms and evolution of cataclysmic variables

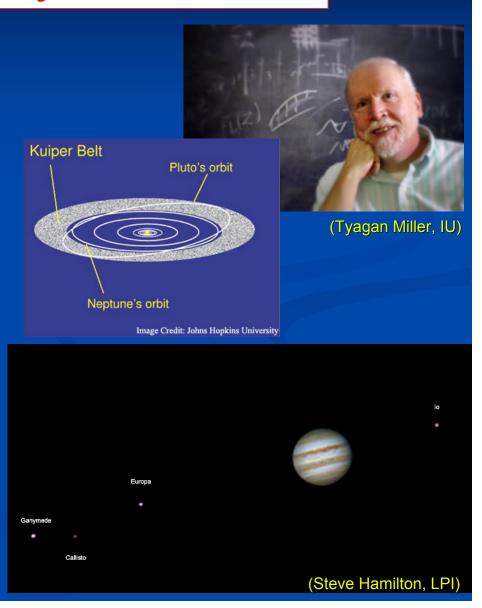
Caty Pilachowski, Haldan Cohn, and Phyllis Lugger -Observations of Outer Regions of Globular Clusters

Deep imaging in multiple filters (griz) around Milky Way globular clusters, out to distances of ~2 - 3 degrees (or further if appropriate)

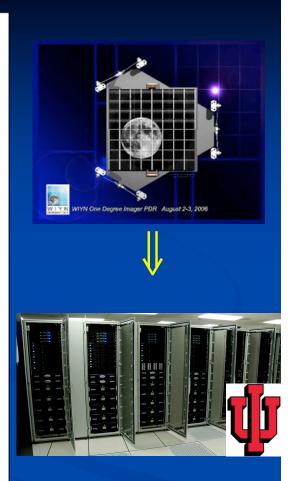
Select high-latitude clusters to minimize contamination from disk stars

Use these types of observations to investigate:

- Dynamical mass loss
- Tidal tails
- Characterizing low mass stellar populations in globular clusters
- Search for CVs in outer regions (Cohn & Lugger)


(Tyagan Miller, IU)

Dick Durisen - ODI Studies of Small Bodies in the Solar System


For example:

- Searching the entire Hill sphere of Jupiter to look for satellites (the outskirts have not been entirely surveyed)
- Studies of Kuiper belt objects with ODI
- Looking for ideas from others in the WIYN consortium, and/or planetary scientists in the community...

ODI Data Reduction, Analysis, & Archiving

- IU astronomers and information technology staff have been working with WIYN to determine how IU's highperformance computing and storage facilities can help with ODI data processing and archiving
- IU has powerful supercomputers, the Data Capacitor (a unique 1-Petabyte rapid-access data storage facility), and a 4-Petabyte robotic tape archive that can be used for WIYN ODI data
- Details are TBD, but one possibility is that ODI data will be automatically copied to IU, pipeline-processed (with some user input), archived, and made available to WIYN users via a web interface
- Some analysis and visualization could be done remotely by users accessing their data via IU supercomputer connected to Data Capacitor (performs faster than local disk)

