Galactic Structure and Near-Field Cosmology via Astrometry with ODI

Dana Casetti-Dinescu - Wesleyan and Yale Terry Girard - Yale Bill van Altena - Yale

-Science Objectives

-Preliminary Astrometric Results with OPTIC on WIYN

-Planned Early-release Results

Science Objectives

Milky Way dwarf spheroidals:

"missing" satellite problem \rightarrow subhalo mass distribution \rightarrow tidal effects on mass determinations \rightarrow accurate orbits \rightarrow accurate absolute proper motions

origin \rightarrow cosmological substructures or tidal dwarf galaxies? \rightarrow distribution of orbital angular momentum \rightarrow orbits \rightarrow accurate absolute proper motions

targets: 9 satellites within 90 kpc ($\delta > -15^{\circ}$)

Milky Way globular clusters:

formation of the MW globular cluster (GC) system → accretion vs dissipational collapse? → chemical & kinematic signature → orbits → accurate absolute proper motions

nature of most massive, multiple-population GCs → nuclei of disrupted satellites? → kinematic signature → orbits → accurate absolute proper motions

targets: 30 candidate GCs ($\delta > -15^{\circ}$)

Freeman 2007, Dinescu et al. 1999

www.sdss.org

Science Objectives

Tidal streams:

shape of the Galactic potential & satellite disruption processes \rightarrow 3D velocities of stars in tidal streams \rightarrow accurate absolute proper motions

targets: Sgr stream, Mon stream, Virgo Overdensity, possibly a few others

Main Milky-Way components (thin, thick disks and halo):

formation in a cosmological context \rightarrow mean velocities and velocity dispersions as a function of distance from the Galactic plane and center \rightarrow accurate absolute proper motions

targets: ~3 main fields, plus along the lines of sight to streams, globular clusters and dwarf satellites

Keller et al. 2008

Science Objectives

Comparison of Astrometric Precision

System	Precision (mas)	FOV / Area	Scale ("/pix)	Reference
HST+ACS/WFC	1	3.3'x3.3' 0.003 sq deg	0.049	Anderson & King 2006, 2007
HST+WFPC2	1	1.3'x1.3' (x3) 0.0014 sq deg	0.1	Anderson & King 2003
ESO2.2m+WFI	7	34'x34' 0.32 sq deg	0.24	Anderson et al. 2006
WIYN+OPTIC	2	9.6'x9.6' 0.026 sq deg	0.14	This work and Vieira et al. 2005
WIYN+ODI	2	60'x60' 1.0 sq deg	0.11	Projected

Preliminary Astrometric Results with OPTIC on WIYN

The Orthogonal Parallel Transfer Imaging Camera (OPTIC) consists of two 2K x 4K chips mounted side by side in a dewar.

Table 1-1: CCD parameters			
Parameter	Value		
pixel size	$15 \ \mu m$		
pixel size	0.14 arcsec		
readout time (unbinned)	25 sec		
readout time (binned 2x2)	8 sec		
CCD thickness	$45 \ \mu m$		
read noise	4 e ⁻		
gain	$1.4 e^{-}/ADU$		
full well	$> 80 \mathrm{k} \mathrm{e}^-$		
non-linearity	$<1\%~$ to ${\sim}30k~{\rm ADU}$		
gap between CCDs	104 pixels=14 arcsec		
dewar hold time	$\sim 8 \text{ hour}$		

www.noao.edu/wiyn/instrument

Tonry and Howell 2004

FOV: 9.6 x 9.6 arcmin

Figure 1-1: Dimensions of the CCDs.

Preliminary Astrometric Results with OPTIC on WIYN

Observations of open cluster NGC 188 in 2003 and 2007

Preliminary Astrometric Results with OPTIC on WIYN

Planned Early-Release Results with ODI

Combine early ODI observations with existing high-quality photographic material, and with existing/soon-to-be taken OPTIC observations.

Specific targets:

- Draco dSph (~1970s Hale 60 and 200inch plates)
- NGC 5466, NGC 6229 (~1970s Hale 60 and 200-inch plates)
- M 13, M 15, M 2 (OPTIC)
- Kapteyn Selected Area (SA) fields

along $\delta = 0^{\circ}, +15^{\circ}, -15^{\circ}$

(~1996 du Pont 2.5m plates, Mayall 4m plates)

Grillmair 2006, SDSS DR4